Data Manager¶
twinweaver.common.data_manager ¶
Classes¶
DataManager ¶
Manages data loading, processing, and splitting for a single indication.
This class handles the lifecycle of data for one specific indication,
including loading data from files (or using overridden dataframes),
performing processing steps like date conversion and cleaning, ensuring
unique event naming, and splitting the patient data into training,
validation, and test sets based on patient IDs. It utilizes a Config
object for various settings and column names.
Source code in twinweaver/common/data_manager.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 | |
Functions¶
__init__ ¶
__init__(
config,
train_split_min=0.8,
validation_split_max=0.1,
test_split_max=0.1,
max_val_test_nr_patients=500,
replace_special_symbols_override=None,
)
Initializes the DataManager for a specific indication.
Sets up the manager with the configuration, data split parameters, and options for handling special characters in event names.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config
|
Config
|
A configuration object containing paths, column names, category names, and other constants used throughout the data management process. |
required |
train_split_min
|
float
|
The minimum proportion of patients to allocate to the training set. Defaults to 0.8. The actual number will be the remainder after allocating validation and test sets. |
0.8
|
validation_split_max
|
float
|
The maximum proportion of the total patients to allocate to the
validation set. The actual number is capped by
|
0.1
|
test_split_max
|
float
|
The maximum proportion of the total patients to allocate to the
test set. The actual number is capped by |
0.1
|
max_val_test_nr_patients
|
int
|
The absolute maximum number of patients to include in the validation and test sets combined. Defaults to 500. |
500
|
replace_special_symbols_override
|
list
|
A list of tuples to override the default special character replacements
in event descriptive names. Each tuple should be in the format
|
None
|
Source code in twinweaver/common/data_manager.py
get_all_patientids_in_split ¶
Retrieves all patient IDs belonging to a specific data split.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
split
|
str
|
The name of the split (e.g., "train", "validation", "test"). |
required |
Returns:
| Type | Description |
|---|---|
list
|
A list of patient ID strings belonging to the specified split. |
Source code in twinweaver/common/data_manager.py
get_patient_data ¶
Retrieves and consolidates all data for a specific patient.
Requires load_indication_data and process_indication_data to have
been called. It's also recommended to call setup_unique_mapping_of_events
to ensure consistent event naming.
This method gathers data from the 'events', and 'constant'
DataFrames for the specified patientid.
- It filters the 'events' tables for the patient.
- It filters the 'constant' table for the patient's static data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
patientid
|
str
|
The unique identifier for the patient whose data is to be retrieved. |
required |
Returns:
| Type | Description |
|---|---|
dict
|
A dictionary containing the patient's data, with two keys: - "events": A pandas DataFrame containing all time-series events (events data and sortedby date). - "constant": A pandas DataFrame containing the static (constant) data for the patient. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If |
KeyError
|
If essential columns specified in the config are missing from the dataframes after loading. |
Source code in twinweaver/common/data_manager.py
get_patient_split ¶
Retrieves the split assignment for a specific patient.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
patientid
|
str
|
The unique identifier for the patient. |
required |
Returns:
| Type | Description |
|---|---|
str
|
The name of the split the patient belongs to. |
Source code in twinweaver/common/data_manager.py
infer_var_types ¶
Fills self.dm.variable_types for every candidate forecasting variable.
Classifies as "numeric" if at least self.config.numeric_detect_min_fraction of values
can be parsed as numeric, otherwise "categorical".
Source code in twinweaver/common/data_manager.py
load_indication_data ¶
Loads the data tables (as dataframes) for the specified indication. It also removes any columns named "Unnamed: *" from the loaded DataFrames.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df_events
|
DataFrame
|
The events dataframe containing time-series data. |
required |
df_constant
|
DataFrame
|
The constant dataframe containing static patient data. |
required |
df_constant_description
|
DataFrame
|
The dataframe describing the constant variables. |
required |
Source code in twinweaver/common/data_manager.py
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | |
process_indication_data ¶
Performs initial processing on the loaded indication data.
Requires load_indication_data to be called first.
This method converts the date columns (specified by config.date_col)
in the 'events' DataFrame to datetime objects.
It also checks for and removes rows with missing dates in these tables,
logging a warning if any are found.
Raises:
| Type | Description |
|---|---|
ValueError
|
If |
Source code in twinweaver/common/data_manager.py
setup_dataset_splits ¶
Assigns each patient to a data split (train, validation, or test).
Requires load_indication_data to be called first.
The method determines the split assignment for each patient.
It retrieves all unique patient IDs from the 'constant' data table.
It calculates the number of patients for validation and test sets based on
the validation_split_max, test_split_max, and max_val_test_nr_patients
parameters set during initialization. The remaining patients are assigned to the training set #
(calculated as the remainder after validation and test sets are allocated). Patients are randomly
shuffled (with a fixed seed for reproducibility) before assignment.
The resulting mapping (patient ID to split name) is assigned to the
constant dataframe. It also stores all patient IDs in
self.all_patientids. Asserts are performed to ensure the mapping covers
all patients without overlap and that the split sizes match calculations.
Raises:
| Type | Description |
|---|---|
ValueError
|
If |
AssertionError
|
If calculated splits do not match expected counts or if overlaps exist. |
Source code in twinweaver/common/data_manager.py
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 | |
setup_unique_mapping_of_events ¶
Ensures uniqueness of descriptive event names and applies replacements.
Requires load_indication_data to be called first.
This method first identifies event_descriptive_name values that map to
multiple event_name values within the same event_category. For these
non-unique descriptive names, it appends the corresponding event_name
to make them unique (e.g., "Measurement" becomes "Measurement - Systolic BP").
Secondly, it applies predefined or overridden special character replacements
(e.g., replacing "/" with " per " in lab results) to the
event_descriptive_name column based on the event_category.
Finally, it rebuilds the self.unique_events mapping (containing unique
combinations of event_name, event_descriptive_name, and event_category)
and asserts that all event_descriptive_name values are now unique.
Raises:
| Type | Description |
|---|---|
ValueError
|
If |
AssertionError
|
If, after processing, the |
Source code in twinweaver/common/data_manager.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | |