Converter Forecasting¶
twinweaver.instruction.converter_forecasting ¶
Classes¶
ConverterForecasting ¶
Bases: ConverterBase
Handles the conversion between structured patient data splits and text-based formats suitable for forecasting language models.
This class focuses specifically on generating prompts that ask a model to predict future values of specific variables (e.g., lab results) at given future time points (days/weeks relative to a split date). It also formats the actual future data (target) into a corresponding text string and handles the reverse conversion from model-generated text back to a structured DataFrame. Warning: variables including "weeks" can also mean days if configured so.
Attributes:
| Name | Type | Description |
|---|---|---|
constant_description |
DataFrame
|
DataFrame holding descriptions for constant variables. |
nr_tokens_budget_total |
int
|
The target token budget for the combined input and output strings. |
forecasting_prompt_start |
str
|
The initial text segment of the forecasting prompt. |
forecasting_prompt_var_time |
str
|
The text segment used in the prompt to link a variable to its prediction times. |
forecasting_prompt_summarized_start |
str
|
Starting text for summarized prompts (not used in core methods here). |
forecasting_prompt_summarized_genetic |
str
|
Text for genetic info in summarized prompts (not used here). |
forecasting_prompt_summarized_lot |
str
|
Text for LoT info in summarized prompts (not used here). |
tokenizer |
AutoTokenizer
|
Tokenizer instance for calculating token counts. |
nr_tokens_budget_padding |
int
|
Padding added to token budget calculations. |
always_keep_first_visit |
bool
|
Flag indicating if the first visit's data should always be kept during token budget trimming. |
Source code in twinweaver/instruction/converter_forecasting.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | |
Functions¶
__init__ ¶
Initializes the ConverterForecasting instance.
Sets up the converter with necessary configurations, including descriptions for constant patient features, the total token budget for generated text, and various prompt templates defined in the Config object.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
constant_description
|
DataFrame
|
DataFrame containing descriptions for constant patient attributes (e.g., 'Sex: Male'). Used potentially by base class methods for input string generation. |
required |
nr_tokens_budget_total
|
int
|
The target maximum number of tokens for the combined input (history) and output (forecast) text. |
required |
config
|
Config
|
A Config object containing shared configuration settings like prompt templates, column names, tokenizer details, etc. |
required |
dm
|
DataManager
|
DataManager object containing the variable types and data frames. |
required |
Source code in twinweaver/instruction/converter_forecasting.py
aggregate_multiple_responses ¶
Aggregates structured data from multiple model responses (e.g., trajectories).
Takes a list of DataFrames, where each DataFrame represents the structured
output converted from a single model response (e.g., using reverse_conversion).
It concatenates these DataFrames and calculates the mean of numeric event
values, grouping by date and event identifiers. This is useful for combining
results from multiple stochastic samples from a model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
responses_dfs
|
list[DataFrame]
|
A list of DataFrames, each converted from a separate model forecast output string. Expected to have consistent columns as defined in the config (date, event name, value, etc.). |
required |
Returns:
| Name | Type | Description |
|---|---|---|
resulting_df |
DataFrame
|
A DataFrame containing the aggregated results, typically with the event values averaged per date/event. |
meta |
dict
|
A dictionary containing metadata, currently includes "all_trajectory_data" which holds the original list of input DataFrames. |
Source code in twinweaver/instruction/converter_forecasting.py
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | |
forward_conversion ¶
Performs the primary conversion from a data split to prompt and target strings.
This method orchestrates the generation of the target string (what the model should predict) and the corresponding prompt string (the instruction asking for the prediction) based on a patient data split.
Note: This method generates the prompt and target strings. The generation
of the input string (patient history) is typically handled separately, often
by the base class's _get_input_string method, using the "events_until_split"
and "constant_data" from the patient_split.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
patient_split
|
DataSplitterForecastingOption
|
DataSplitterForecastingOption containing the data for a single split. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
prompt_str |
str
|
The generated prompt instructing the model on the forecasting task. |
target_str |
str
|
The formatted string representing the target forecast values. |
target_meta |
dict
|
Metadata associated with the generated target string
(output from |
Source code in twinweaver/instruction/converter_forecasting.py
forward_conversion_inference ¶
Generates only the prompt string for inference scenarios.
Used when the goal is to get a prediction from the model, not for training. It takes the patient's historical data and a specific set of variables and future days/weeks to predict, then constructs the appropriate prompt string. It does not generate a target string, as the target is what the model is expected to produce.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
patient_split
|
DataSplitterForecastingOption
|
DataSplitterForecastingOption containing the data for a single split. |
required |
future_weeks_per_variable
|
dict
|
Dictionary explicitly defining the forecasting task.
Format: { |
required |
Returns:
| Name | Type | Description |
|---|---|---|
prompt_str |
str
|
The generated prompt for the inference task. |
target_pseudo_meta |
dict
|
A dictionary containing the metadata constructed
specifically for generating this inference prompt (includes the provided
|
Source code in twinweaver/instruction/converter_forecasting.py
generate_target_manual ¶
generate_target_manual(
target_events_after_split,
split_date_included_in_input,
events_until_split,
lot_date=None,
)
Manually generates the target string and metadata from explicit components.
Provides an alternative way to generate the target string and metadata
by directly passing the necessary DataFrames and the split date, rather
than relying on a pre-packaged patient_split dictionary. This might be
useful in scenarios where the data components are sourced differently.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target_events_after_split
|
DataFrame
|
DataFrame containing the future events that constitute the target forecast. |
required |
split_date_included_in_input
|
datetime
|
The reference date marking the end of the input history and the start of the forecast period. |
required |
events_until_split
|
DataFrame
|
DataFrame containing the historical events up to
the |
required |
lot_date
|
datetime
|
The start date of the relevant Line of Therapy, if applicable. Defaults to None. |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
target_str |
str
|
The formatted string representing the target forecast. |
target_meta |
dict
|
Metadata associated with the generated target string
(same structure as output from |
Source code in twinweaver/instruction/converter_forecasting.py
reverse_conversion ¶
Converts a formatted forecast text string back into a structured DataFrame.
Parses a text string (assumed to be generated by a forecasting model in
a specific format, e.g., using "[X] weeks later..." markers) and extracts
the forecasted event data. It uses the split_date as the reference point
for calculating absolute dates from relative week offsets in the text.
Relies on the base class's _extract_event_data method for the core parsing logic.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text_to_convert
|
str
|
The text string generated by the model containing the forecast. |
required |
unique_events
|
DataFrame
|
A DataFrame defining known event types (names, categories) to help with parsing and validation within the base class method. |
required |
split_date
|
datetime
|
The date relative to which the week offsets (e.g., "[X] weeks later")
in the |
required |
Returns:
| Name | Type | Description |
|---|---|---|
converted_data |
DataFrame
|
A DataFrame containing the structured event data parsed from the input text, sorted by date, category, and event name for consistency. |